Fermat’s Treatise on Quadrature : a New Reading

نویسندگان

  • JAUME PARADÍS
  • P. VIADER
چکیده

The Treatise on Quadrature of Fermat (c. 1659), besides containing the first known proof of the computation of the area under a higher parabola, ∫ x dx, or under a higher hyperbola, ∫ x dx— with the appropriate limits of integration in each case—, has a second part which was not understood by Fermat’s contemporaries. This second part of the Treatise is obscure and difficult to read and even the great Huygens described it as “published with many mistakes and it is so obscure (with proofs redolent of error) that I have been unable to make any sense of it”. Far from the confusion that Huygens attributes to it, in this paper we try to prove that Fermat, in writing the Treatise, had a very clear goal in mind and he managed to attain it by means of a simple and original method. Fermat reduced the quadrature of a great number of algebraic curves to the quadrature of known curves: the higher parabolas and hyperbolas of the first part of the paper. Others, he reduced to the quadrature of the circle. We shall see how the clever use of two procedures, quite novel at the time: the change of variables and a particular case of the formula of integration by parts, provide Fermat with the necessary tools to square very easily curves as well-known as the folium of Descartes, the cissoid of Diocles or the witch of Agnesi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fourteenth lecture on Fermat’s Last Theorem∗

The title of this lecture alludes to Ribenboim’s delightful treatise on Fermat’s Last Theorem [Rib1]. Fifteen years after the publication of [Rib1], Andrew Wiles finally succeeded in solving Fermat’s 350-year-old conundrum. That same year, perhaps to console himself of Fermat’s demise, Ribenboim published a second book, this time on Catalan’s conjecture that there are no consecutive perfect pow...

متن کامل

Analysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method

The new version of differential quadrature (DQ) method is extended to analyze the free vibration of thin sector orthotropic plates on the Pasternak elastic foundation with various sector angles and elastic parameters. Detailed formulations are given. Comparisons are made with existing analytical and/or numerical data. Numerical results indicate that convergence can be achieved with increasing i...

متن کامل

Darwin and inheritance: the influence of Prosper Lucas.

An important historical relation that has hardly been addressed is the influence of Prosper Lucas's Treatise on Natural Inheritance on the development of Charles Darwin's concepts related to inheritance. In this article we trace this historical connection. Darwin read Lucas's Treatise in 1856. His reading coincided with many changes concerning his prior ideas on the transmission and expression ...

متن کامل

Thermo-elastic analysis of a functionally graded thick sphere by differential quadrature method

Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...

متن کامل

Application of CAS wavelet to construct quadrature rules for numerical ‎integration‎‎

In this paper‎, ‎based on CAS wavelets we present quadrature rules for numerical solution‎ ‎of double and triple integrals with variable limits of integration‎. ‎To construct new method‎, ‎first‎, ‎we approximate the unknown function by CAS wavelets‎. ‎Then by using suitable collocation points‎, ‎we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004